Language Evolution and Language Acquisition

The way children learn language sets the adaptive landscape on which languages evolve.  This is acknowledged by many, but there are few connections between models of language acquisition and models of language Evolution (some exceptions include Yang (2002), Yu & Smith (2007) and Chater & Christiansen (2009)).

However, the chasm between the two fields may be getting smaller, as theories are defined as models which are both more interpretable to the more technically-minded Language Evolutionists and extendible into populations and generations.

Also, strangely, models of word learning have been getting simpler over time.  This may reflect a move from attributing language acquisition to specific mechanisms towards a more general cognitive explanation.  I review some older models here, and a recent publication by Fazly et al.

Continue reading “Language Evolution and Language Acquisition”

What Makes Humans Unique ?(III): Self-Domestication, Social Cognition, and Physical Cognition

ResearchBlogging.orgIn my last post I summed up some proposals for what (among other things) makes human cognition unique. But one thing that we should bear in mind, I think, is that our cognitive style may more be something of an idiosyncrasy due to a highly specific cognitive specialization instead of a definitive quantitative and qualitative advance over other styles of animal cognition. In this post I will look at studies which further point in that direction.

Chimpanzees, for example, beat humans at certain memory tasks  (Inoue & Matsuzawa 2007) and behave more rational in reward situations (Jensen et al. 2007).

In addition, it has been shown that in tasks in the social domain, which are generally assumed to be cognitively complex, domesticated animals such as dogs and goats (Kaminski et al. 2005) fare similarly well or even outperform chimpanzees.

Social Cognition and Self-Domestication

It is entirely possible that the first signs of human uniqueness where at first simply side-effects our self-domesticating lifestyle – the same way the evolution of social intelligence in dogs and goats is hypothesised to have come about –, acting on a complex primate brain (Hare & Tomasello 2005).

This line of reasoning is also supported by domesticated silver foxes which have been bred for tameness over a time period of 50 years but developed other interesting characteristics as a by-product: To quote from an excellent post on the topic over at a Blog Around the Clock (see also here):

“They started having splotched and piebald coloration of  their coats, floppy ears, white tips of their tails and paws. Their body proportions changed. They started barking. They improved on their performance in cognitive experiments. They started breeding earlier in spring, and many of them started breeding twice a year.”

What seems most interesting to me, however, is another by-product of their experimental domestication: they also improved in the domain of social cognition. For example, like dogs, they are able to understand human communicative gestures like pointing. This is all the more striking because, as mentioned above, chimpanzees do not understand human communicative gestures like  helpful  pointing. Neither do wolves or non-domesticated silver foxes (Hare et al. 2005).

Continue reading “What Makes Humans Unique ?(III): Self-Domestication, Social Cognition, and Physical Cognition”

Bayesian Bilingualism

Recently, David Burkett and Tom Griffiths have looked at iterated learning of multiple languages from multiple teachers (Burkett & Griffiths 2010, see my post here).  Here, I’ll describe a simpler model which allows bilingualism.  I show that, counter-intuitively, bilingualism may be more stable than monolingualism.

Continue reading “Bayesian Bilingualism”

Recent Abstracts #1

In an effort to update this blog regularly, I’ve decided to take the lazy route and post up a list of abstracts. This will only happen once a week, but it’s a useful resource (for me at least), and will usually be an indicator of what articles I’m going to write about in the near future.

Continue reading “Recent Abstracts #1”

Experiments in cultural transmission and human cultural evolution

ResearchBlogging.orgFor those of you familiar with the formal mathematical models of cultural evolution (Cavalli-Sforza & Feldman, 1981; Boyd & Richerson, 1985), you’ll know there is a substantive body of literature behind the process of cultural transmission. It comes as a surprise, then, that experiments in this area are generally lacking.

For instance, if we look at evolutionary biology, then there are many experiments into small-scale microevolutionary processes, such as natural selection, sexual selection, mutation and drift, which are then applied in showing how these processes generate population-level, macroevolutionary patterns. It follows then, that this sort of population-level thinking can be applied to cultural evolution: the forces and biases of cultural transmission can be studied experimentally to see if they fit with population-level patterns of cultural change documented by scientists. As the current paper by Mesoudi & Whiten (2008) notes, this potentially gives cultural transmission experiments added significance: “cultural transmission should not only be studied for its own sake (i.e. in order to better understand cultural transmission itself), but also in order to explain broader cultural patterns and trends, all as part of a unified science of cultural evolution”.

Continue reading “Experiments in cultural transmission and human cultural evolution”

Broca's area and the processing of hierarchically organised sequences pt.2

ResearchBlogging.org3. Neurological processing of hierarchically organised sequences in non-linguistic domains

A broader perspective sees grammar as just one of many hierarchically organised behaviours being processed in similar, prefrontal neurological regions (Greenfield, 1991; Givon, 1998). As Broca’s area is found to be functionally salient in grammatical processing, it is logical to assume that this is the place to search for activity in analogous hierarchical sequences. Such is the basis for studies into music (Maess et al., 2001), action planning (Koechlin and Jubault, 2006) and tool-production (Stout et al., 2008).

Continue reading “Broca's area and the processing of hierarchically organised sequences pt.2”

Broca's area and the processing of hierarchically organised sequences pt.1

ResearchBlogging.orgEver since its discovery in 1861, Broca’s area (named after its discoverer, Paul Broca) has been inextricably linked with language (Grodzinsky and Santi, 2008). Found in the left hemisphere of the Pre-Frontal Cortex (PFC), Broca’s region traditionally[1] comprises of Broadmann’s areas (BA) 44 and 45 (Hagoort, 2005). Despite being relegated in its status as the centre of language, this region is still believed to play a vital role in certain linguistic aspects.

Of particular emphasis is syntax. However, syntactic processing is not unequivocally confined to Broca’s area, with a vast body of evidence from “Studies investigating lesion deficit correlations point to a more distributed representation of syntactic processes in the left perisylvian region.” (Fiebach, 2005, pg. 80). A more constrained approach places Broca’s area as processing an important functional component of grammar (Grodzinsky and Santi, 2007). One of these suggestions points specifically to how humans are able to organise phrases in hierarchical structures[2].

In natural languages, “[…] the noun phrases and the verb phrase within a clause typically receive their grammatical role (e.g., subject or object) by means of hierarchical relations rather than through the bare linear order of the words in a string. [my emphasis]” (Musso et al., 2003, pg. 774). Furthermore, these phrases can be broken down into smaller segments, with noun phrases, for example, consisting of a determiner preceding a noun (Chomsky, 1957). According to Chomsky (1957) these rules exist without the need for interaction in other linguistic domains. Take for example his now famous phrase of “Colourless green ideas sleep furiously.” (ibid, pg. 15). Despite being syntactically correct, it is argued the sentence as a whole is semantically meaningless.

The relevant point to take away is a sentence is considered hierarchical if phrases are embedded within other phrases. Yet, examples of hierarchical organisation are found in many domains besides syntax. This includes other language phenomena, such as prosody. Also, non-linguistic behaviours – such as music (Givon, 1998), action sequences (Koechlin and Jubault, 2006), tool-use (cf. Scott-Frey, 2004) and tool-production (Stout et al., 2008) – are all cognitively demanding tasks, comparable with that of language. We can even see instances of non-human hierarchical representations: from the songs of humpback whales (Suzuki, Buck and Tyack, 2006) to various accounts of great apes (McGrew, 1992; Nakamichi, 2003) and crows (Hunt, 2000) using and manufacturing their own tools[3].

With this in mind, we can ask ourselves two questions corresponding to Broca’s area and hierarchical organisation: Does Broca’s area process hierarchically organised sequences in language? And if so, is this processing language-specific? The logic behind this two-part approach is to help focus in on the problem. For instance, it may be found hierarchical structures in sentences are processed by Broca’s area. But this belies the notion of other hierarchically organised behaviours also utilising the same cognitive abilities.

Continue reading “Broca's area and the processing of hierarchically organised sequences pt.1”

Language as a complex adaptive system

ResearchBlogging.orgA prominent idea in linguistics is that humans have an array of specialised organs geared towards the production, reception and comprehension of language. For some features, particularly the physical capacity to produce and receive multiple vocalizations, there is ample evidence for specialisation: a descended larynx (Lieberman, 2003), thoracic breathing (MacLarnon & Hewitt, 1999), and several distinct hearing organs (Hawks, in press). Given that these features are firmly in the domain of biology, it makes intuitive sense to apply the theory of natural selection to solve the problem: humans are specially adapted to the production and reception of multiple vocalizations.

Continue reading “Language as a complex adaptive system”

Memory master chimp

Having already written an article about the wonders of Orangutans, I felt that Chimps needed to reclaim their rightful place as the second-best primate. What better way to demonstrate their rightful genius than to beat the presumed kings of short term memory, us mere (and slightly less impressive) humans. Don’t believe me, well watch this great National Geographic clip:

N.B. I know this is hardly cutting edge news, but I was writing a best of 2008 post earlier this year, and forgot to finish writing the post. So, expect a whole slew of articles over the next 24 hours.