New Book. New Ideas?

A new book is to be published on May the 24th. By John F. Hoffecker the book is entitled “Landscape of the Mind: Human Evolution and the Archaeology of Thought” – it aims to look at the emergence of human thought and language through archaeological evidence

Archeologists often struggle to find fossil evidence pertaining to the evolution of the brain. Thoughts are a hard thing to fossilize. However, John Hoffecker claims that this is not the case and fossils and archaeological evidence for the evolution of the human mind are abundant.

Hoffecker has developed a concept which he calls the “super-brain” which he hypothesises emerged in Africa some 75,000 years ago. He claims that human’s ability to share thoughts between individuals is analogous to the abilities of honey bees who are able to communicate the location of food both in terms of distance and direction. They do this using a waggle-dance. Humans are able to share thoughts between brains using communicative methods, the most obvious of these being language.

Fossil evidence for the emergence of speech is thin on the ground and, where it does exist, is quite controversial. However, symbols emerging in the archaeological record coincides with an increase in evidence of creativity being displayed in many artifacts from the same time. Creative, artistic designs scratched on mineral pigment show up in Africa about 75,000 years ago and are thought to be evidence for symbolism and language

Hoffecker also hypothesises that his concept of the super-brain is likely to be connected to things like bipedalism and tool making. He claims that it was tool making which helped early humans first develop the ability to represent complex thoughts to others.

He claims that tools were a consequence of bipedalism as this freed up the hands to make and use tools. Hoffecker pin points his “super-brain” as beginning to emerge 1.6 million years ago when the first hand axes began to appear in the fossil record. This is because hand axes are thought to be an external realisation of human thought as they bear little resemblance to the natural objects they were made from.

By 75,00 years ago humans were producing perforated shell ornaments, polished bone awls and simple geometric designs incised into lumps of red ochre.

Humans are known to have emerged from Africa between 60,00 to 50,000 years ago based on archeological evidence. Hoeffecker hypothesises that – “Since all languages have basically the same structure, it is inconceivable to me that they could have evolved independently at different times and places.”

Hoeffecker also lead a study in 2007 that discovered a carved piece of mammoth ivory that appears to be the head of a small figurine dating to more than 40,000 years ago. This is claimed to be the oldest piece of figurative art ever discovered. Finds like this illustrate the creative mind of humans as they spread out of Africa.

Figurative art and musical instruments which date back to before 30,000 years ago have also been discovered in caves in France and Germany.

This looks to be nothing new but archaeological evidence is something which a lot of people interested in language evolution do not often discuss. I also don’t really know what to think of Hoeffecker’s claim that “all languages basically have the same structure”. What do you think?

The emergence of stable bilingualism in the lab: An experiment proposal

There is a huge amount of linguistic diversity in the world. Isolation and drift due to cultural evolution can explain much of this, but there are many cases where interacting groups use several languages. In fact, by some estimates, bilingualism is the norm for most societies. If one views language as a tool for communicating about objects and events, it seems strange that linguistic diversity should be maintained over time for two reasons. First, it seems more efficient, during language use, to have a one-to-one mapping between signals and meanings. In fact, mutual exclusivity is exhibited by young children and has been argued to be an innate bias and crucial to the evolution of a linguistic system. How or why do bilinguals over-ride this bias? Secondly, learning two language systems must be more difficult than learning one. What is the motivation for expending extra effort on learning an apparently redundant system?

Despite these obstacles, stable bilingualism exists in many parts of the world.   How might these arise and be maintained?  Continue reading “The emergence of stable bilingualism in the lab: An experiment proposal”

Intelligence: Darwin vs. Wallace

It’s Charles Darwin’s birthday today! He’s 202. So in celebration I’ve written a post on the still ongoing controversy which the theory of evolution by natural selection caused and is causing, specifically with regards to the emergence of human intelligence.

Alfred Russel Wallace is widely seen as the co-discoverer of the theory of evolution by natural selection. While Darwin had been formulating his theory from as early as the late 1830s, he kept quite about it for more than twenty years while he amassed evidence to support it. In 1858 Alfred Russell Wallace, a naturalist of the same time, sent Darwin a letter outlining for him a theory of evolution which very closely mirrored Darwin’s own. The pair co-presented their theory to the Linnaean Society in 1858 but due to Darwin’s long time amassing evidence and refining his ideas, it was his book, On The Origin of Species, which was published in 1859 and set Darwin’s name firmly in the history books as the discoverer of natural selection.

While Wallace’s part in the discovery of natural selection is far from undocumented or unknown, it is largely for presenting ‘the same ideas’ as Darwin for which he is known and what is rarely discussed in the differences in their ideas. In this post I will briefly discuss a new(ish) paper by Steven Pinker on the evolution of human intelligence and some the differences between the thinking of Darwin and Wallace on the subject.

Darwin, unsurprisingly, asserted that the abstract nature of human intelligence can be fully explained by natural selection. In opposition to this Wallace claimed that it was of no use to ancestral humans and therefore could only be explained by intelligent design:

“Natural selection could only have endowed savage man with a brain a few degrees superior to that of an ape, whereas he actually possesses one very little inferior to that of a philosopher.”(Wallace, 1870:343)

Unsurprisingly most scientists these days do not agree with Wallace on either the point that the human brain could not be the result of natural selection or that as a result of this problem it must have been a product of design by a higher being. It would be both dismissive and dull to leave the discussion at that however, which is where Pinker comes in. Despite Wallace’s argument probably coming to the wrong conclusion he does bring up some very interesting questions which need answering, namely that of; “why do humans have the ability to pursue abstract intellectual feats such as science, mathematics, philosophy, and law, given that opportunities to exercise these talents did not exist in the foraging lifestyle in which humans evolved and would not have parlayed themselves into advantages in survival and reproduction even if they did?” (Pinker, 2010:8993)

Continue reading “Intelligence: Darwin vs. Wallace”

Evolving Linguistic Replicators: Major Transitions and Grammaticalisation

ResearchBlogging.orgJust before Christmas I found myself in the pub speaking to Sean about his work on bilingualism, major transitions and the contrast between language change and the cultural evolution of language. Now, other than revealing that our social time is spent discussing our university work, the conversation brought up a distinction not often made: whilst language change is part of language evolution, the latter is also what we consider to be a major transition. As you evolutionary biologists will know, this concept is perhaps best examined and almost certainly popularised in Maynard Smith & Szathmáry’s (1995) The Major Transitions in Evolution. Here, the authors are not promoting the fallacy of guided evolution, where the inevitable consequence is increased and universal complexity. Their thesis is more subtle: that some lineages become more complex over time, with this increase being attributable to the way in which genetic information is transmitted between generations. In particular, they note eight transitions in the evolution of life:

What’s notable about these transitions, and why they aren’t necessarily an arbitrary list, is that all of them share some broad commonalities, namely:

Continue reading “Evolving Linguistic Replicators: Major Transitions and Grammaticalisation”

From Natyural to Nacheruhl: Utterance Selection and Language Change

Most of us should know by now that language changes. It’s why the 14th Century prose of Geoffrey Chaucer is nearly impenetrable to modern day speakers of English. It is also why Benjamin Franklin’s phonetically transcribed pronunciation of the English word natural sounded like natyural (phonetically [nætjuɹəl]) rather than our modern variant with a ch sound (phonetically [nætʃəɹəl]). However, it is often taken for granted on this blog that language change can be understood as an evolutionary process. Many people might not see the utility of such thinking outside the realm of biology. That is, evolutionary theory is strictly the preserve of describing biological change, and is less useful as a generalisable concept. A relatively recent group of papers, however, have taken the conceptual machinery of evolutionary theory (see Hull, 2001) and applied it to language.

It's all natyural, yo!

Broadly speaking, these utterance selection models highlight that language change occurs across two steps, each corresponding to an evolutionary process: (1) the production of an utterance, and (2) the propagation of linguistic variants within a speech community. The first of these, the production of an utterance, takes place across an extremely short timescale: we will replicate particular sounds, words, and constructions millions of times across our production lifetime. It is as this step where variation is generated: phonetic variation, for instance, is not only generated through different speakers having different phonetic values for a single phoneme — the same speaker will produce different phonetic values for a single phoneme based on the context. Through variation comes the possibility of selection within a speech community. This leads us to our second timescale, which sees the selection and propagation of these variants — a process that may “take many generations of the replication of the word, which may–or may not–extend beyond the lifetime of an individual speaker.” (Croft, in press).

Recent mathematical work in this area has highlighted four selection mechanisms: replicator selection, neutral evolution, neutral interactor selection, and weighted interactor selection. I’ll now provide a brief overview of each of these mechanisms in relation to language change.

Continue reading “From Natyural to Nacheruhl: Utterance Selection and Language Change”

Some Links #18: GxExC

The depression map: genes, culture, serotonin, and a side of pathogens. Another new science blog network (Wired) and once again a new stable of good science writers. I’m particularly pleased to see that David Dobbs, a former SciBling and top science writer, has found a new home for Neuron Culture. I was also pleased to see he had written an article on studies into the interactions between genes and culture, namely: Chiao & Blizinsky (2009) and Way & Lieberman (2010). And I was even more pleased to see that he’d mentioned both mine and Sean’s posts on the social sensitivity hypothesis. Suffice to say, I was pleased.

Take home paragraph:

In a sense, these studies are looking not at gene-x-environment interactions, or GxE, but at genes x (immediate) environment x culture — GxExC. The third variable can make all the difference. Gene-by-environment studies over the last 20 years have contributed enormously to our understanding of mood and behavior. Without them we would not have studies, like these led by Chiao and Way and Kim, that suggest broader and deeper dimensions to what makes us struggle, thrive, or just act differently in different situations. GxE is clearly important. But when we leave out variations in culture, we risk profoundly misunderstanding how these genes — and the people who carry them — actually operate in the big wide world.
Razib also has some thoughts on the topic:
The same issues are not as operative when it comes to culture. Two tribes can speak different dialects or languages. If a woman moves from one tribe to another her children don’t necessarily speak a mixture of languages, rather, they may speak the language of their fathers. The nature of cultural inheritance is more flexible, and so allows for the persistence of more heritable variation at different levels of organization. Differences of religion, language, dress, and values, can be very strong between two groups who have long lived near each other and may be genetically similar.

Homo was born vocalizing. Babel’s Dawn links to a recently finished PhD thesis that supposedly argues for a relatively recent emergence for language (approx. 120,000 years ago). She defends her assertions by stating: “[…] all of the unique cognitive traits attributed to humans arose as the consequence of one crucial mutation, which radically altered the architecture of the ancestral primate brain.” I haven’t read the thesis, and I probably won’t as I’m already stretched in regards to my reading, but I’m completely unconvinced by the hopeful mutation hypothesis. Plus, as Bolles notes in his post, there is plenty of available evidence to the contrary.

Primed for Reading. Robert Boyd reviews Stanislas Dehane’s new book, Reading in the Brain: The Science and Evolution of a Human Invention, which I’ll be picking up soon. In the meantime, to give you a bit of background, I suggest you read Dehane’s (2007) paper on the Neuronal Recycling Hypothesis: the Cultural recycling of cortical maps. H/T: Gene Expression.

Through the looking glass (part 1). The Lousy Linguist reviews Guy Deutscher’s new book, Through the Language Glass: Why the World Looks Different in Other Languages, with the general takeaway message being that, in part one at least, one where the book is a bit science-lite. What really interested me, though, were these two paragraphs:

We discover quite quickly what Deutscher is doing as he begins to walk through complexity issues of “particular areas of language” (page 109), namely morphology, phonology, and subordination. And these last 15 pages are really the gem of Part 1. He shows that there is an interesting, somewhat illogical, entirely engaging but as yet unexplained set of correlations between speaker population size and linguistic complexity.

For example, languages with small numbers of speakers tend to have more morphologically rich grammars (hence one could claim that small = more complex). However, small languages with small numbers of speakers also tend to have small phonological inventories. Hmmm, weird, right? [My emphasis]

As those of you who read this blog will know: I don’t think it’s weird that small speaker populations also tend to have small phonological inventories.

Clothing lice out of Africa. A cool new paper by Troups et al which looks at the evolutionary history of clothing lice to provide specific estimates on the origin of clothing. Using a Bayesian coalescent modelling approach, they estimate that clothing lice diverged from head louse ancestors between 83,000 and 170,000 years ago. H/T: Dienekes.

Evolution of Colour Terms: 1 Genetic Constraints

Continuing my series on the Evolution of Colour terms, this post reviews the evidence for genetic constrains on colour perception. For the full dissertation and for references, go here.

Continue reading “Evolution of Colour Terms: 1 Genetic Constraints”

Experiments in communication pt 2: Human Iterated Learning

ResearchBlogging.orgIn the last post, I discussed some of the literature into experimental communication, with the intention of then following it up by looking at recent experiments done at Edinburgh (and beyond). But as Hannah pipped me to the post, with a great overview of the wide range of experiments into language evolution, I’ll instead limit this to two relatively recent papers on Human Iterated Learning (Kirby et al., 2008; Cornish et al., 2009)

Drawing from experimental approaches found in Diffusion Chain and Artificial Language Learning studies, Kirby et al (2008) show that as a consequence of intergenerational transmission languages “culturally evolve in such a way as to maximize their own transmissibility: over time, the languages in our experiments become easier to learn and increasingly structured.” In these experiments a subject is exposed to an alien language, made up of two elements within a finite space: meanings (consisting of a picture with three discernible elements: colour, shape and movement) paired with signals (consisting of a string of letters). Importantly, the subject is only exposed to a set amount of meanings (SEEN items), after which they are then presented with a group of meanings (some SEEN, some UNSEEN) without the corresponding signal — the goal being that they provide a response (be it the correct version or not). On completion of forming the meaning-signal pairs the experiment is repeated, except this time the new subjects are trained on the data provided by the previous generation. This continues until the experiment is finished, which in this case happened at generation ten.

Continue reading “Experiments in communication pt 2: Human Iterated Learning”

Language evolution in the laboratory

When talking about language evolution there’s always a resistance from people exclaiming;  ‘but how do we know?’, ‘surely all of this is conjecture!’ and, because of this, ‘what’s the point?’

Thomas Scott-Phillips and Simon Kirby have written a new article (in press) in ‘Trends in Cognitive Science’ which addresses some of the techniques currently used to address language evolution using experiments in the laboratory.

The Problem of language evolution

The problem of language evolution is one which encompasses not only the need to explain biologically how language came about but also how language came to be how it is today through processes of cultural evolution. Because of this potential ambiguity arises when using the term ‘language evolution’. To sort this ambiguity the authors put forward the following:

Language evolution researchers are interested in the processes that led to a qualitative change from a non-linguistic state to a linguistic one. In other words, language evolution is concerned with the emergence of language

Continue reading “Language evolution in the laboratory”

Experiments in Communication pt 1: Artificial Language Learning and Constructed Communication Systems

ResearchBlogging.orgMuch of recent research in linguistics has involved the use of experimentation to directly test hypotheses by comparing and contrasting real-world data with that of laboratory results and computer simulations. In a previous post I looked at how humans, non-human primates, and even non-human animals are all capable of high-fidelity cultural transmission. Yet, to apply this framework to human language, another set of experimental literature needs to be considered, namely: artificial language learning and constructed communication systems.

Continue reading “Experiments in Communication pt 1: Artificial Language Learning and Constructed Communication Systems”