Some Links #13: Universal Grammar Haters

Universal Grammar haters. Mark Lieberman takes umbrage with claims that Ewa Dabrowska’s recent work challenges the concept of a biologically evolved substrate for language. Put simply: it doesn’t. What their experiments suggest is that there are considerable differences in native language attainment. As some of you will probably know, I’m not necessarily a big fan of most UG conceptions, however, there are plenty of papers that directly deal with such issues. Dabrowska’s not being one of them. In Lieberman’s own words:

In support of this view, let me offer another analogy. Suppose we find that deaf people are somewhat more likely than hearing people to remember the individual facial characteristics of a stranger they pass on the street. This would be an interesting result, but would we spin it to the world as a challenge to the widely-held theory that there’s an evolutionary substrate for the development of human face-recognition abilities?

Remote control neurons. I remember reading about optogenetics awhile back. It’s a clever technique that enables neural manipulation through the use of light-activated channels and enzymes. Kevin Mitchell over at GNXP classic refers to a new approach where neurons are activated using a radio frequency magnetic field. The obvious advantage to this new approach being fairly straight-forward: magnetic-fields pass through brains far more easily than light. It means the new approach is a lot less invasive, without the need to insert micro-optical fibres or light-emitting diodes. Cool stuff.

Motor imagery enhances object recognition. Neurophilosophy has an article about a study showing that motor simulations may enhance the recognition of tools:

According to these results, then, the simple action of squeezing the ball not only slowed down the participants’ naming of tools, but also slightly reduced their accuracy in naming them correctly. This occured, the authors say, because squeezing the ball involves the same motor circuits needed for generating the simulation, so it interferes with the brain’s ability to generate the mental image of reaching out and grasping the tool. This in turn slows identification of the tools, because their functionality is an integral component of our conceptualization of them. There is other evidence that  parallel motor simulations can interfere with movements, and with each other: when reaching for a pencil, people have a larger grip aperture if a hammer is also present than if the pencil is by itself.

On the Origin of Science Writers. If you fancy yourself as a science writer, then Ed Yong, of Not Exactly Rocket Science, wants to read your story. As expected, he’s got a fairly large response (97 comments at the time of writing), which includes some of my favourite science journalists and bloggers. It’s already a useful resource, full of fascinating stories and bits of advice, from a diverse source of individuals.

Some thoughts about science blog aggregation. Although it’s still hanging about, many people, including myself, are looking for an alternative to the ScienceBlogs network. Dave Munger points to Friendfeed as one potential solution, with him setting up a feed for all the Anthropology posts coming in from Research Blogging. Also, in the comments Christina Pikas mentioned Nature Blogs, which, I’m ashamed to say, I haven’t come across before.

How and Why did Madness Evolve??

I’m reading a book at the minute called ‘The descent of madness: Evolutionary Origins of Psychosis and the Social Brain’ by Jonathan Burns. I thought I’d summarise some of the theories in the book as to how schizophrenia came about, for the principle reason that it’s very bloody interesting.

Some evolutionary thinkers have posited that schizophrenia is a recent disorder which is a modern response to the stresses of the industrial and technological age. Burns argues against this and claims that there is evidence of schizophrenia from early human history.

So, how and why did schizophrenia evolve when it has such a maladaptive nature? It’s certainly not being selected out because the phenotype still persists with a similar rate of incidence across the human race.

The Adaptionist Programme has a solution for this problem of mental disorders in that it views them as behavioural traits which evolved due to an advantage for the the individual in the ‘ancestral environment’, however, now, in a world which has changed and become psychologically stressful, a mismatch is created between the evolved trait and the modern environment.

The persistence of the phenotype can also be explained by taking into account the fact that psychotic illness has a continuum on which schizophrenia is a severe end of the spectrum, because of this other phenotypes on the genetic spectrum could harbour particularly adaptive traits. Genetically related but unaffected individuals who share some of the milder features of the illness may possess some kind of evolutionary advantage and hence the phenotype would linger.

The hypotheses above are plausible by Jonathan Burns claims he has a better solution:

Our hominid ancestors evolved a sophisticated neural network supporting social cognition and adaptive interpersonal behaviour (in other words the social brain). This has been identified, using functional imaging, to be comprised in the fronto-temporal and fronto-parietal cortical networks. Psychosis (and schizophrenia in particular) are characterised by functional and structural deficits in these areas and hence the term ‘social brain disorders’ are fitting.

Schizophrenics display abnormalities in a wide range of social cognition tasks such as emotion recognition, theory of mind and affective responsiveness and as a result individuals with schizophrenia find themselves disadvantaged in the social arena and vulnerable to the stresses of their complex social environments.

So, since there is such evidence to support that the areas which comprise our ‘social brains’ are the same regions which contribute to the disorder of schizophrenia when functional and structural deficits are present it becomes clear that schizophrenia exists as a consequence to the complex social brain.

This is a desirable hypothesis due to the fact that it does not rely on a Cartesian model of an isolated ethereal mind separated from body and environment, and instead concentrates on a physically and socially integrated construct of mind, embodied in the living world.

Interesting.

I’d just like to add a small disclaimer which says that I’m not an expert in schizophrenia or pretty much anything I’m writing about here (I haven’t even finished the book) so sorry if I’ve got anything hideously wrong. Please tell me. I’ll revisit this with extra thoughts on the subject once I have finished the book.

In other news and on the subject of evolutionary psychology here’s a really fun and ridiculously geeky thing I found:

Evolutionary Psychology Bingo!

The Media Noose: Copycat Suicides and Social Learning

This post was chosen as an Editor's Selection for ResearchBlogging.orgResearchBlogging.orgI always remember 2008 as the year when the entire UK media descended upon the former mining town of Bridgend. The reason: over the course of two years, 24 young people, most of whom were between the ages of 13 and 17, decided to commit suicide. At the time I was working in Bridgend, so I’m able to appreciate the claims of local MP, Madeleine Moon, that media influence had become part of problem. After all, most editors will tell you: the aim is to sell newspapers. And when this rule is rigorously applied, it should not come as a surprise at the depths some journalists will sink to recycle a news story. Even at a local-level, where you’d think some civic responsibility might exist, journalists clambered over themselves to find a new angle, generating ridiculous claims such as: electromagnetic waves from mobile phones caused the suicides.

Continue reading “The Media Noose: Copycat Suicides and Social Learning”

Can linguistic features reveal time depths as deep as 50,000 years ago?

ResearchBlogging.orgThroughout much of our history language was transitory, existing only briefly within its speech community. The invention of writing systems heralded a way of recording some of its recent history, but for the most part linguists lack the stone tools archaeologists use to explore the early history of ancient technological industries. The question of how far back we can trace the history of languages is therefore an immensely important, and highly difficult, one to answer. However, it’s not impossible. Like biologists, who use highly conserved genes to probe the deepest branches on the tree of life, some linguists argue that highly stable linguistic features hold the promise of tracing ancestral relations between the world’s languages.

Previous attempts using cognates to infer the relatedness between languages are generally limited to predictions within the last 6000-10,000 years. In the present study, Greenhill et al (2010) decided to examine more stable linguistic features than the lexicon, arguing:

Continue reading “Can linguistic features reveal time depths as deep as 50,000 years ago?”

Recent Abstracts #1

In an effort to update this blog regularly, I’ve decided to take the lazy route and post up a list of abstracts. This will only happen once a week, but it’s a useful resource (for me at least), and will usually be an indicator of what articles I’m going to write about in the near future.

Continue reading “Recent Abstracts #1”

The arcuate fasciculus within the dual stream model pt.2

ResearchBlogging.org3.1 What is the dual stream model?

Given these separate anatomical accounts, attributing a function(s) to the arcuate is not clear cut, and any current account is far from the authoritative statement on the matter. Nonetheless, a vast majority of literature does place the arcuate as part of the dual stream model[1] of speech processing, although its exact role within these neural networks is still being disputed – and largely depends on which anatomical account you prescribe to.

The basic assumption of dual stream accounts is that phonological networks interact with both conceptual-semantic and motor-articulatory systems, leading to a distinction between the neural networks that process this speech information. These separate interactions are summarised under two processing streams: the dorsal stream and the ventral stream (Hickok and Poeppel, 2007). Connecting phonological networks with conceptual-semantic systems, using structures in the superior and middle portions of the temporal lobe, is the ventral stream. Meanwhile, the dorsal stream is linked via structures in the posterior frontal lobe to the posterior temporal lobe and parietal operculum, which connects phonological networks with motor-articulatory systems (ibid).

Continue reading “The arcuate fasciculus within the dual stream model pt.2”