Cultural innovation, Pleistocene environments and demographic change

ResearchBlogging.orgIt is well documented that Thomas Robert Malthus’ An Essay on the Principle of Population greatly influenced both Charles Darwin and Alfred Russell Wallace’s independent conception of their theory of natural selection. In it, Malthus puts forward his observation that the finite nature of resources is in conflict with the potentially exponential rate of reproduction, leading to an inevitable struggle between individuals. Darwin took this basic premise and applied it to nature, as he notes in his autobiography:

In October 1838, that is, fifteen months after I had begun my systematic inquiry, I happened to read for amusement Malthus on Population, and being well prepared to appreciate the struggle for existence which everywhere goes on  from long-continued observation of the habits of animals and plants, it at once struck me that under these circumstances favourable variations would tend to be preserved, and unfavourable ones to be destroyed. The results of this would be the formation of a new species. Here, then I had at last got a theory by which to work.

The interaction of demographic and evolutionary processes is thus central in understanding Darwin’s big idea: that exponential growth will eventually lead to a large population, and in turn will generate competition for natural selection to act on any heritable variation which conferred a greater fitness advantage. Under these assumptions we are able to interpret the evolutionary record of most species by appealing to two basic causal elements: genes and the environment. As we all know, in most cases the environment generates selection pressures to which genes operate and respond. For humans, however, the situation becomes more complicated when we consider another basic causal element: culture. The current paper by Richerson, Boyd & Bettinger (2009) offers one way to view this muddied situation by delineating the demographic and evolutionary processes through the notion of time scales:

The idea of time scales is used in the physical environmental sciences to simplify problems with complex interactions between processes. If one process happens on a short time scale and the other one on a long time scale, then one can often assume that the short time scale process is at an equilibrium (or in some more complex state that can be described statistically) with respect to factors governed by the long scale process. If the short time scale and long time scale interact, we can often imagine that at each time step in the evolution of the long time scale process, the short time scale process is at “equilibrium.” A separation of time scales, if justified, makes thinking about many problems of coupled dynamics much easier.

Continue reading “Cultural innovation, Pleistocene environments and demographic change”

Phylogenetics, Cultural Evolution and Horizontal Transmission

ResearchBlogging.orgFor some time now, evolutionary biologists have used phylogenetics. It is a well-established, powerful set of tools that allow us to test evolutionary hypotheses. More recently, however, these methods are being imported to analyse linguistic and cultural phenomena. For instance, the use of phylogenetics has led to observations that languages evolve in punctuational bursts, explored the role of  population movements, and investigated the descent of Acheulean handaxes. I’ve followed the developments in linguistics with particular interest; after all, tracing the ephemeral nature of language is a daunting task. The first obvious road block is that prior to the invention of writing, the uptake of which is limited in geography and history, language leaves no archaeological record for linguists to examine. One particular note I’d like to make is that when Charles Darwin first formulated his theory of natural selection, he took inspiration from linguistic family trees as the basis for his sketch on the evolutionary tree of life. So it seems rather appropriate that phylogenetic approaches are now being used to inform our knowledge regarding linguistic evolution.

Continue reading “Phylogenetics, Cultural Evolution and Horizontal Transmission”

What conclusions can we draw from Neanderthal DNA pt.2

ResearchBlogging.org4. Nuclear DNA: Forays into 3 billion base pairs

4.1 Before Vi-80

The Vindija-80 (Vi-80) specimen is an important find for geneticists: it yielded a minimally contaminated sample and provided those first steps into Neanderthal genomics.

Previously, attempts at retrieving ancient nuclear DNA sequences proved to be a notoriously difficult process, plagued with problems of degradation, contamination and chemical damage (Hofreiter et al., 2001). Researchers also need to contend with quantities of nuclear genome available: for every nuclear genome there are approximately several hundred mtDNAs (Green et al., 2008). The severity of these problems, especially contamination, is magnified through Neanderthal genetic similarity with humans (Green et al., 2006). This is troubling because nuclear DNA presents far less variability than mtDNA (Russell, 2002). As a result, huge stretches of nuclear sequences are required to find a significant number of polymorphisms (ibid). Such implications meant that discovering endogenous DNA sequences requires sifting through a large corpus of “[…] more than 70 Neanderthal bone and tooth samples from different sites in Europe and western Asia” (Green et al., 2006, pg. 331).

Continue reading “What conclusions can we draw from Neanderthal DNA pt.2”

What conclusions can we draw from Neanderthal DNA pt.1

ResearchBlogging.orgIn recent times, genetic technology has progressed sufficiently to elucidate upon some of the questions normally preserved for archaeologists. One such question concerns the fate of a group of hominins that roamed Europe and East Asia for at least 250,000 years. During this time, this species adapted and endured some of the harshest environments on offer, all while showing signs of a unique culture. Only for them to suddenly disappear from the fossil record approximately 30,000 years before present (BP) (cf. Barton et al. 2007). So, what happened to our closest evolutionary relatives, the Neanderthals?

Continue reading “What conclusions can we draw from Neanderthal DNA pt.1”