Tag Archives: signalling

Cultural Evolution and the Impending Singularity: The Movie

This post was chosen as an Editor's Selection for ResearchBlogging.org

Here’s a video of a talk I gave at the Santa Fe Institute‘s Complex Systems Summer School (written with roboticist Andrew Tinka-check out him talking about his fleet of floating robots).  The talk was a response to the “Evolution Challenge”:

  1. Has Biological Evolution come to an end?
  2. Is belief an emergent property?
  3. Will advanced computers use H. Sapiens as batteries?

I also blogged about a part of this talk here (why a mad scientist’s attempt at creating A.I. to make new scientific discoveries was doomed).

The talk was given a prise for best talk by the judging panel which included David Krakauer, Tom Carter and best-selling author Cormac McCarthy.  At several points in the talk, I completely forget what I was supposed to say because the people filming the event asked me to set my screen up in a way so I couldn’t see my notes.


Sperl, M., Chang, A., Weber, N., & Hübler, A. (1999). Hebbian learning in the agglomeration of conducting particles Physical Review E, 59 (3), 3165-3168 DOI: 10.1103/PhysRevE.59.3165

Chater N, & Christiansen MH (2010). Language acquisition meets language evolution. Cognitive science, 34 (7), 1131-57 PMID: 21564247

Ay N, Flack J, & Krakauer DC (2007). Robustness and complexity co-constructed in multimodal signalling networks. Philosophical transactions of the Royal Society of London. Series B, Biological sciences, 362 (1479), 441-7 PMID: 17255020

Ackley, D.H., and Cannon, D.C.. “Pursue Robust Indefinite Scalability”. In Proceedings of the Thirteenth Workshop on Hot Topics in Operating Systems (HOTOS-XIII) (2011, May). Abstract, PDF.

Guttal V, & Couzin ID (2010). Social interactions, information use, and the evolution of collective migration. Proceedings of the National Academy of Sciences of the United States of America, 107 (37), 16172-7 PMID: 20713700

Animal Signalling Theory 101: Handicap, Index… or even a signal? The Case of Fluctuating Asymmetry

The differences between handicaps and indices are usually distinguishable in formal mathematical models or in unambiguous real-world cases. Often though, classifying a trait as a handicap, an index, or even a signal at all, can be quite a difficult task.

For the purposes of illustration I will use Fluctuating Asymmetry (FA for short) as an example.  Fluctuating asymmetry is the term used to refer to deviation from symmetry in paired morphological structures (ranging from birds’ tails to human faces) that should be, all being well, bilaterally symmetric. Deviations from the ideal symmetrical phenotype are caused by inherent genetic perturbations and exposure to environmental disturbances occurring in early development.

Is FA a signal?

In their 2005 book Animal Signals, Maynard-Smith and Harper define a signal as:

‘Any act or structure which alters the behaviour of other organisms, which evolved because of that effect, and which is effective because the receiver’s response has also evolved’

They then argue that FA is unlikely to function as a signal because it is difficult to discern whether receivers respond directly to FA and because there appear to be few examples of displays in which signallers actively advertise their symmetry to receivers.

 

Continue reading

The adaptive value of age, co-operation (and secret signals)

More elephant based news!

A new study from the Proceedings of the Royal Society B, published today, has found that elephants pay attention to the oldest female elephant in their group when a predator is approaching.

The research, carried out in Kenya, used recordings of roars from both male and female lions and monitored the reactions of groups of African Elephants. It has been known for a long time that elephants social groups are formed around a matriarchy. The experiment found that groups of elephants with matriarchs quickly organised themselves into defensive bunch formations after appearing to stop and pay attention to their female leader. These groups were also much more likely to approach the loud speaker producing the roar in an aggressive manner.

Male lions present a greater threat to groups of elephants as they are much more likely to attack elephants when alone and are usually much more successful than females who will only attack when part of a group. The elephants showed an ability to differentiate between male and female lions. The study also showed that matriarchs who were much older were much more likely to react in the appropriate way to roars made by male lions which is thought to be the result of experience.

The signals which allow the Matriarch to elicit this co-ordination among her group are still largely unknown due to the lack of loud vocalisations and Karen McComb and Graeme Shannon, who lead the initial study, are now looking into finding quieter, less obvious vocalisations and posture cues.

The study provides the first empirical evidence that within a social group, individuals may gain benefits from paying attention to an older leader because of their abilities in making decisions when under threat. This generates insights into selection for longevity in cognitively advanced social mammals.